OCHESTER PUBLIC UTILITIES

2011 Electric System Engineering & Operations Report

ROCHESTER PUBLIC UTILITIES ENGINEERING & OPERATIONS REPORT (Electric System) 2011

Cover Photo Description:

Photo above.

Pictured on the cover photo are two RPU line workers that were changing an overhead transformer. This work was part of a larger project to transfer some People's Cooperative customers to RPU's distribution system. This was one of many transformers that needed to be changed due to the distribution voltages being different between RPU and People's Cooperative. Of all the transformers that were changed during this process, approximately two-thirds of them were done by RPU crews climbing the poles, as shown on the photo, rather than using the standard method of bucket trucks. This project transferred 931 customers to the RPU system.

Report prepared by Mike Engle and Melissa Zamzow

ROCHESTER PUBLIC UTILITIES ENGINEERING & OPERATIONS REPORT – 2011

Tak	Table of Contents Page			
I.	Review of Utility Performance A. Technical Services Summary B. Gopher Sate One-Call Activity C. Division Performance Indices	1		
II.	Transmission System Summary A. Circuit Miles of 161kV Transmission B. Transmission Substation Transformers C. Distribution Substation Transformers 161/13.8kV	5		
111.	Distribution System Summary A. Circuit Miles - Fig. 1 Customers Per Mile 3. Utility Poles C. Street and Rental Lights	3		
IV.	Service Territory A. Geographic Area B. Chronology of Events C. Compensation Paid in 2011 D. Escrow Account E. Map of Present and Future Service Areas	3		
V.	Demand Management Summary A. Project Status 3. Residential Load Management Terminal Installations	11		
VI.	Transformer Summary A. New Distribution Purchases 3. Miscellaneous C. Table 1 – Transformer Summary	12		
VII.	Operations Summary A. Number of Capacitors B. Electric Customers C. Historical/Current Year Records D. Yearly System Data (MWH) E. Estimates for Next Year F. Miscellaneous Statistics - Fig. 3 Number of Customer - Fig. 4 Average MWH's Per Residential Customer - Fig. 5 Average MWH's Per SGS Customer - Fig. 6 Average MHW's Per MGS Customer - Fig. 7 Average MHW's Per LGS Customer - Fig. 8 Annual System Load Factor - Fig. 9 Annual Min. & Max. Demand - Fig. 10 RPU System Net Energy Data	14		

Table of Contents	Page
G. System Reliability Statistics	
 Fig. 11 RPU System Reliability Indices 	
H. Estimated Number of Service Locations Per Feeder	
I. Average Annual Outage by Service Area Map	
VIII. Power Production Data A. Power Plant Production Report B. Miscellaneous	25
IX. Environmental/Regulatory Activities	27
- Fig. 12 Lake Zumbro Hydro Data	
- SLP Air Emissions Report	
- SLP Air Emissions Compliance Summary	
- Cascade Creek Air Emissions Compliance Summary	
- Electric Operating Permit Fees	
X. <u>RPU Organizational Chart</u>	34

I. REVIEW OF UTILITY PERFORMANCE

Α.

Technical Services Summary 1. Revenue Services Maintained/Installed

LGS & Industrial Services (1 yr. cycle) Total number of services Total number of services maintained on schedule Services maintained (goal) Services maintained (actual)	40 21 40 21
MGS Services (4 yr. cycle) Total number of services Total number of services maintained on schedule Services maintained (goal) Services maintained (actual)	432 95 105 95
Single Phase Services (16 yr. cycle) Total number of services Total number of services maintained on schedule Services maintained (goal) Services maintained (actual)	49407 3000 *
Poly Phase Services (12 yr. cycle) (SGS, Commercial) Total number of services Total number of services maintained on schedule Services maintained (goal) Services maintained (actual)	N/A N/A N/A N/A
2. Substation/Miscellaneous	
Transformer, breaker, and switch oil tests Switches, breakers, & associated relays maintained (13.8kV) Switches, breakers, & associated relays maintained (161kV) Substation transformers maintained Radio and TV interference problems Distribution transformers maintained Voltage/Power Quality Problems/Projects	187 29 8 2 8 139 46
Notes: Maintenance cycles for substation equipment are: - 13.8kV breakers - 161kV breakers - transformers - protective relays in substations - protective relays in power plants	5 yr. 5 yr. 5 yr. 5 yr. 5 yr. 5 yr.
Gopher State One-Call Activity	
Total Requests	

7,409
8,969

Β.

Gross Total

9,961 * Not available at this time. Reports have not been written to retrieve this information from the CCS System.

C. Division Performance Indices

The following statistics have been developed as indicators of Division performance. Some are considered reflective of Division performance as a whole (DIV), while others are more related to a particular Section's performance (EN, P, SO, or TD). There are very few single-year indicators that we have total control over: the weather can intervene in many of them. However, multi-year averages should be indicative of Division efforts, and are also useful in comparing RPU to regional and national performance.

Target indices are being established in relation to national averages, to RPU's internal goals, and/or to simply improving present performance.

Formulas used are the same as those used by APPA. Statistics involving number of customers or employees use year-end quantities.

Some indices remain unavailable due to difficulties in establishing a reliable method of gathering the information. Each year, we will evaluate the cost-versus-benefit value of each of the indices, and determine whether to continue to collect the information.

Rochester Public Utilities 2011 Performance Indicators Operations Division

		Target	Previous 5						
Item	Name	Value	Year Avg	2011	2010	2009	2008	2007	Comments
100	Avg Customer-Minutes Without Power (SAIDI)	< 53	59.21	49.06	111.4	56.9	25.44	53.23	June 17th Tornado in 2010
101	Avg Outage Length in Minutes (CAIDI)	< 40	94.44	59.41	157.65	80.24	75.59	99.3	June 17th Tornado in 2010
102	Avg Installed Cost/Residential Subd Lot			*	*	*	*	1,520.95	Very little residential development in 2011
103	Avg Installed Cost/Ft-1PH URD in Conduit		7.71	8.11	8.19	7.12	7.60	7.51	Designer calculations, no equipment
104	Avg Installed Cost/3PH Circuit Ft 336MCM		18.80	18.7	18.54	18.79	19.61	18.34	Designer calculations, no equipment
200	600V Distr Transformer KVA/Peak Sys KW	1.5 - 1.75	1.80	1.72	1.8	1.905	1.828	1.75	480V and Below

	Maintenance & Construction Section	Target	Previous 5						
Item	Name	Value	Year Avg	2011	2010	2009	2008	2007	Comments
205	Paid (Non-Billed) Overtime Hours/Tech Services		626.28	711.5	430	403.9	1032	554	
500	Avg Number of Customers Served/T&D Employee	> 1,200	1,651.00	1694	1663	1644	1663	1591	
501	Distribution Circuit Miles/T&D Employee		25.26	26.51	25.57	25.04	25.16	24.02	
	Avg Tree Trimming Cost/Mile - Transmission		582.61	411.38	862.94	759.54	502.54	376.63	
503	Avg Tree Trimming Cost/Mile - OH Distribution		1,466.05	1802.33	1508.84	1,496.30	1,095.52	1,427.26	
505	Paid (Non-Billed) Overtime Hours/T & D		2,225.00	2233.1	2401.4	2209.55	1896	2384.95	
506	Total Number of Accidents + Near-Misses/T & D	0	13.00	10	10	14	16	15	

Rochester Public Utilities 2011 Performance Indicators Operations Division

	Power Resources Section	Target	Previous 5						
Item	Name	Value	Year Avg	2011	2010	2009	2008	2007	Comments
300	Forced Outage Factor - Hydro Wheel 1	0	0.56	0.67	2.11	0	0	0	
	Forced Outage Factor - Hydro Wheel 2		0.41	0.67	1.4				
301	Forced Outage Factor - SLP #1	0	32.30	0	0	0.52	0	161	
302	Forced Outage Factor - SLP #2	0	29.66	2.12	0	2.18	0	144	
303	Forced Outage Factor - SLP #3	0	39.93	1.99	1.37	1.23	13.58	181.5	
304	Forced Outage Factor - SLP #4	0	38.83	0.54	2.08	2.51	11.34	177.7	
305	Forced Outage Factor - Combustion Turbine 1	0	20.45	0.02	0.68	0.39	36.9	64.24	
305B	Forced Outage Factor - Combustion Turbine 2		8.12	0.2	7.75	28.53	1.66	2.45	
306	Availability Factor - Hydro Wheel 1	95	98.39	99.17	92.77	100	100	100	
	Availability Factor - Hydro Wheel 2		39.17	99.28	96.58				
307	Availability Factor - SLP #1	95	92.32	96.36	96.99	84.96	95.37	87.94	
308	Availability Factor - SLP #2	95	93.33	94.24	96.8	91.47	95.37	88.78	
	Availability Factor - SLP #3	95	86.53	92.36	94.32	74.11	81.35	90.52	
	Availability Factor - SLP #4	95	84.15	92.96	93.41	81.18	67.29	85.89	
	Availability Factor - Combustion Turbine 1	95	75.30	98.77	98.4	95.52	48.03	35.76	
311B	Availability Factor - Combustion Turbine 2	95	86.29	97.01	89.47	58.86	91.46	94.64	
312	Capacity Factor - Hydro Wheel 1		52.16	63.22	41.74	39.42	52.95	63.46	
	Capacity Factor - Hydro Wheel 2		25.93	64.41	65.24				
	Capacity Factor - SLP #1		3.65	1.02	0.88	0.89	4.46	11	
	Capacity Factor - SLP #2		14.81	0.57	0.41	24.98	29.13	18.95	
	Capacity Factor - SLP #3		15.53	0.65	7.68	1.19	24.27	43.88	
316	Capacity Factor - SLP #4		15.33	0.8	2.12	7.55	24.69	41.49	
317	Capacity Factor - Combustion Turbine 1		0.05	0.18	0.05	0	0	0	
317B	Capacity Factor - Combustion Turbine 2		5.13	1.05	1.3	2.61	5.89	14.79	
318	O&M Cost Per Net MWH - Hydro Wheel 1		4.53	1.07	5.26	4.50	6.17	5.64	
	O&M Cost Per Net MWH - Hydro Wheel 2		3.97	10.87	8.96				
	O&M Cost Per Net MWH - SLP #1		57.50	45.37	76.09	79.93	56.77	29.34	
	O&M Cost Per Net MWH - SLP #2		38.13	67.13	33.92	29.82	32.74	27.05	
	O&M Cost Per Net MWH - SLP #3		34.18	77.21	43.83	9.62	20.22	20	
	O&M Cost Per Net MWH - SLP #4		12.39	5.6	28.08	10.13	10.66	7.49	
323	O&M Cost Per Net MWH - Combustion Turbine 1		19.42	9.66	10.92	-13.64	36.82	53.35	
323B	O&M Cost Per Net MWH - Combustion Turbine 2		4.91	6.87	12.71	-0.92	2.11	3.77	
324	URGE Test Rating (MW) - Hydro Wheel 1	> 1,500	1,590.00	1,650	1,650	1,650	1,500	1,500	
	URGE Test Rating (MW) - Hydro Wheel 2	> 1,500	660.00	1,650	1,650				
	URGE Test Rating (MW) - SLP #1	> 9,500	9,423.60	9465	9310	9310	9565	9468	
	URGE Test Rating (MW) - SLP #2	> 13,500	14,027.40	14,155	13,814	13,814	14,330	14,024	
327	URGE Test Rating (MW) - SLP #3	> 24,000	23,850.00	22,000	24,750	24,750	23,500	24,250	
	URGE Test Rating (MW) - SLP #4	> 59,000	55,980.60	51,170	56,767	56,767	56,467	58,732	
	URGE Test Rating (Seas Avg, MW)- C.Turbine 1	> 35,000	29,874.40	30,160	28,810	28,810	30,176		Avg of Winter/Summer ratings
	URGE Test Rating (Seas Avg, MW)-C. Turbine 2	> 49,500	49,481.60	49,575	49,608	49,608	49,465	49,152	
331	Total URGE Rating of All Units	> 192,000	184,887.60	179,825	186,359	184,709	185,003	188,542	
332	Labor Hours/MWH Gross Generation		0.26	0.21	0.23	0.14	0.45	0.27	Plant labor only
333	Total Overtime Hours		1,151.84	681.2	734	304	1911.5	2128.5	
334	Incidence Rate of Injury Days Lost		4.09	0.7	0	7.61	8.71	3.45	
335	Avg Training-Safety Hours Per Employee		26.98	24.9	16.3	21.6	40.9	31.2	
	Avg Training-Safety Cost Per Employee		1,298.95	1043.00	727.00	990.31	2211.59	1522.86	
	Avg Sick Leave Hours Per Employee	< 44	39.36	33.2	35.8	35.6	46	46.2	
338	Avg Number of Employees (Including Director)		52.80	51	53	56	53	51	

II. TRANSMISSION SYSTEM SUMMARY

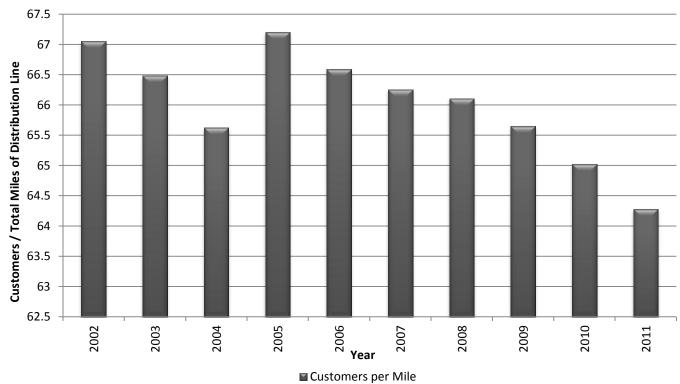
- A. Circuit Miles of 161kV Transmission 42.42
- B. Transmission Substation Transformers

Substation	Transformer	<u>Voltage</u>	<u>MVA</u>
Cascade Creek	GSU 2	13.8/161kV	37.5/50/62.5/70
Silver Lake	GSU 4	13.8/161kV	37.5/50/62.5/70

Total Transmission Substation Capacity 75/100/125/140

C. Distribution Substation Transformers 161/13.8kV Rates listed are 55°C rise self-cooled/first stage of cooling/second stage of cooling/65°C rise with both stages of cooling.

Substation	Transformer	<u>MVA</u>
Cascade Creek	T1 T2	20/27/33/37 15/20/25/28
Bamber Valley	T1 T2	15/20/25/28 15/20/25/28
Zumbro River	T1 T2	15/20/25/28 15/20/25/28
IBM	T1 T2	20/27/33/37 20/27/33/37
Northern Hills	T1 T2	15/20/25/28 15/20/25/28
Silver Lake	T4 T3	20/27/33/37 20/27/33/37
Crosstown	T1 T2	20/27/33/37 20/27/33/37
Westside*	T1	20/27/33/37
Willow Creek	T1 T2	15/20/25/28 15/20/25/28
Total Distribution Substation Capacity		295/396/489/548


*The transformer at Westside has not been placed into service yet

III. DISTRIBUTION SYSTEM SUMMARY

A. Circuit Miles

3Ø Circuit Miles 1. Overhead (9.34 miles added in 2011) 2. Underground (1.45 miles added in 2011) Total 3Ø Miles	170.8 <u>130.84</u> 301.64
2Ø Circuit Miles 1. Overhead (.66 miles added in 2011) 2. Underground (0 miles removed) Total 2Ø Miles	2.86 0 2.86
1Ø Circuit Miles 1. Overhead (13.72 miles added in 2011) 2. Underground (1.84 miles added in 2011) Total 1Ø Miles	124.51 <u>339.64</u> 464.15
Total Miles of Distribution System Line	768.65

Figure 1

CUSTOMERS PER MILE

Utility Poles (totals as of 12/31/2011) Β.

> Total Number of Wood Distribution Poles in System (30'-55') Net Pole Usage (Poles Issued-Returned to Stock) 13,060 1. 125

> > 980

Total Number of Transmission Poles in System 2.

HeightCountHeightCountHeightCount 85 11 30^* 1 55 1 90 9 35^* 9 65 1 95 10409701 100 4456 75 7 105 3 50 89 76 1 110 2 55 37 80 7 115 1 60 36 85 18 120 0 65 66 86 1 125 070 53 88 1 125 070 53 88 1 125 070 53 89 2 80 107 90 36 85 142 91 1 90 126 93 2 95 56 94 2 100 15 95 16 105 5 97 2 110 8 98 1 115 1 99 1 120 0 100 11 125 1 102 1 105 11 105 11 110 1111 110 1111 120 0 125 1	Concrete		Wo	ood	Steel		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	11	30 *	1	55	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	9	35 *	9	65	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	10	40	9	70	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	4	45	6	75	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	3	50	89	76	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	2	55	37	80	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	1	60	36	85	18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	0	65	66	86	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125	0	70	53	88	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total	40	75	45	89	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			80	107	90	36	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			85	142	91	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			90	126	93	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			95	56	94	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100	15	95	16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			105	5	97	2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			110	8	98	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			115	1	99	1	
Total 812 103 1 105 11 105 11 110 1 110 1 111 1 1 1 120 0 125 1			120	0	100	11	
105 11 110 1 111 1 120 0 125 1			125	1	102	1	
110 1 111 1 120 0 125 1			Total	812	103	1	
111 1 120 0 125 1					105	11	
120 0 125 1					110	1	
125 1					111	1	
					120	0	
Total 128					125	1	
10idi 120					Total	128	

Rented Poles in the System 3.

RPU Rents from Qwest	719
RPU Rents from PCPA	<u>32</u>
Total Number of Poles RPU Rents	751
Qwest Rents from RPU	2,743
Charter Communications Rents from RPU	7,188
McLeod Rents from RPU	496
PCPA Rents from RPU	199
Norlight Rents from RPU	9
Onvoy	0
Enventis Telecom	5
Arvig Comm. Systems	<u>506</u>
Total Number of Poles Rented from RPU	11,146

Street and Rental Lights C.

Total Number of Streetlights and Rental Lights on System

Streetlights Α.

Β.

Streetlights			Net
	2010	2011	Change
175W MV	423	0	-423
250W MV	14	6	-8
400W MV	23	10	-13
175MH	35	34	-1
250MH	45	45	0
100W HPS	6710	6693	-17
150W HPS	0	8	8
250W HPS	1403	1377	-26
400W HPS	221	201	-20
Total	8874	8374	
40W LED	13	0	-13
47W LED	6	7	1
70W LED	0	423	423
75W LED	11	0	-11
100W LED	0	1	1
157W LED	0	30	30
175W LED	<u>0</u>	<u>1</u>	1
Total	30	462	
Rental Lights			
70W MV	1	1	0
70W HPS	31	31	0
100W HPS	386	428	42
150 MV	0	1	1
175W MV	117	149	32
250W HPS	613	635	22
400W MV	10	22	12
400W HPS	20	30	10
150HPS Roadway	<u>147</u>	<u>143</u>	-4
Total	1325	1440	

*MH = Decorative lights installed at Shoppes on Maine *MV Increase in MV lights due to PCS transfers *LED Lights are being evaluated and are installed at test sites.

IV. SERVICE TERRITORY

A. Geographic Area

	<u>Square Miles</u>
1974 assigned area:	30.88
Acquired through 12-31-11:	<u>27.618</u>
Current assigned territory:	58.50

B. Chronology of Events

- Approximately 931 customers were transferred from Peoples system to RPU's system. The majority of those customers were in the Marvale area. This completed the transfer of existing customers from the 2008 agreement.
- On September 19th, 2011, RPU received notice of Peoples intent to cancel the 2008 Service Territory Agreement. The existing 2008 agreement will terminate on January 1st 2013.
- C. Compensation paid in 2011 Millrate payments:

\$638,400

D. Escrow Account (was closed due to the 2008 agreement)

V. **DEMAND MANAGEMENT SUMMARY**

- Project Status Α.
 - Installed 22 residential and 0 commercial load management terminals. Maintained load management hardware. Responded to 32 load management callouts. _
 - -
 - _

Β. Residential Load Management Terminal Installations

	<u>2009</u>	<u>2010</u>	<u>2011</u>
A/C	23	28	20
Dual	0	0	0
W/H	0	<u> </u>	2
Total	23	29	22

VI. TRANSFORMER SUMMARY

В.

A. New Distribution Purchases

	<u>2010</u>			<u>2011</u>	
	Number	<u>KVA</u>	<u>Numb</u>	er	<u>KVA</u>
Aerial Padmount	146 <u>80</u> 226	4,300 <u>7,120</u> 11,420		225 <u>146</u> 371	4,012 <u>11,262</u> 15,275
Miscellaneous					
Ratio of Connected kVA vs.	System Peak Dem	and	<u>2009</u> 1.905	<u>2010</u> 1.8	<u>2011</u> 1.72

Table 1

ENGINEERING/OPERATIONS TRANSFORMER SUMMARY 2011

Size (KVA)	RPU Transformers in Use 120/208 V	RPU Transformers in Use 277/480 V	RPU Transformers in Stock 120/208 V	RPU Transformers in Stock 277/480 V	Customer Transformers In Use	RPU Transformers In Use	Total Transformers in Use	Total KVA in Use
5	0	0	0	0	0	15	15	75
10	6	0	0	0	0	597	597	5970
15	3	0	0	0	0	863	863	12945
25	5	15	0	3	0	1965	1965	49125
37.5	1	3	0	8	0	2069	2069	77587.5
45	18	0	0	0	0	16	16	720
50	0	0	0	15	0	1194	1194	59700
75	151	15	0	14	0	412	412	30900
100	0	0	0	0	0	85	85	8500
112.5	79	7	4	1	0	86	86	9675
150	146	14	6	6	0	160	160	24000
167.5	0	0	0	0	0	7	7	1172.5
225	70	23	2	1	1	97	98	21825
250	0	0	0	0	3	0	3	0
300	67	25	5	3	0	92	92	27600
500	56	39	2	2	7	95	102	47500
750	15	40	1	0	0	55	55	41250
1000	2	18	1	2	1	20	21	20000
1500	0	16	0	0	1	16	17	24000
2000	0	4	0	0	0	4	4	8000
2500	0	10	0	1	2	10	12	25000
3500	0	0	0	0	0	2	2	7000
	619	229	21	56	15	7860	7875	502545

Customer Owned 11,975 kVA RPU Owned Transformers 490,570 kVA

VII. **OPERATIONS SUMMARY**

Α. Number of Capacitors

1. Total 13.8kV capacitance in service (12	2/31/2011) 84,000 KVAR
2. Capacitance installed in 2011 prior to p	oeak 0 KVAR

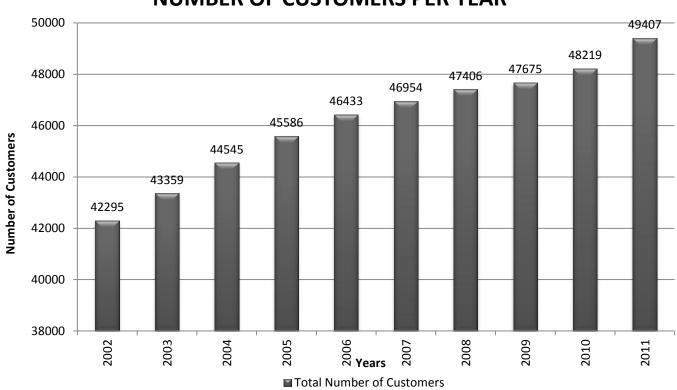
(There are no PCB contaminated capacitors on the RPU system.)

Β. **Electric Customers**

	2008	<u>2009</u>	<u>2010</u>	<u>2011</u>
Industrial	2	2	2	2
Commercial	4540	4546	4599	4701
Residential	42861	43123	43614	44700
Streetlighting & Highway	3	3	3	3
Interdepartmental	1	1	1	1
Total Electric Customers	47406	47675	48219	49407

This customer count data is shown as weighted annual averages as reported to U.S. Dept. of Energy on Form EIA-861.

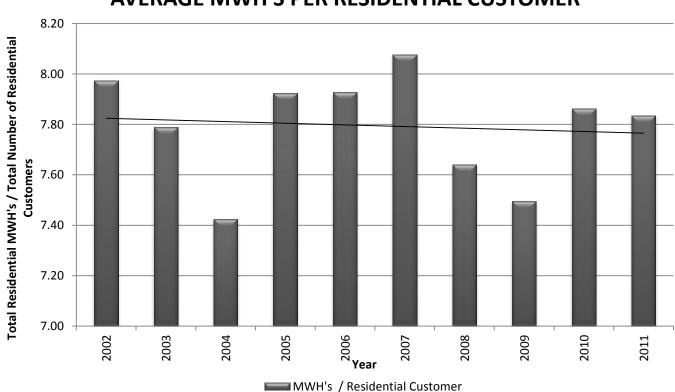
C. Historical/Current Year Records


Historical			
System Net Peak (winter) MW	192	12/15/2008	
System Net Peak (summer) MW	292.1	7/20/2011	
System Net Energy For Load-Max Day (kWh)	5,874,607	7/20/2011	
System Net Energy For Load-Max Month (kWh)	142,094,781	7/1/2006	
<u>Current</u>			
System Net Peak (winter)	180	12/6/2011	
System Net Peak (summer)	292.1	7/20/2011	
Maximum Day	5,874,607	7/20/2011	
Maximum Month	141,476,891	7/1/2011	
rly System Data (MWH)			

D. Yearl

E.

	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>
Steam	196,145	44,826	25,587	6,213
Hydro	13,002	9,678	13,242	14,056
Combustion Turbine	25,806	12,200	5,790	4,874
Total System Generation	234,954	66,726	44,619	25,144
Purchased Power (Scheduled)	1,324,665	1,235,081	1,260,920	1,263,798
System Net Energy for Load	1,328,421	1,245,714	1,273,864	1,275,759
System Net Peak (MW)	270.4	261.1	278.3	292.1
Estimates For Next Year				


System Net Energy For Load (MWH)	1,320,000
Monthly Consumption (Peak)	142,000
Peak Demand (MW)	300,000

NUMBER OF CUSTOMERS PER YEAR

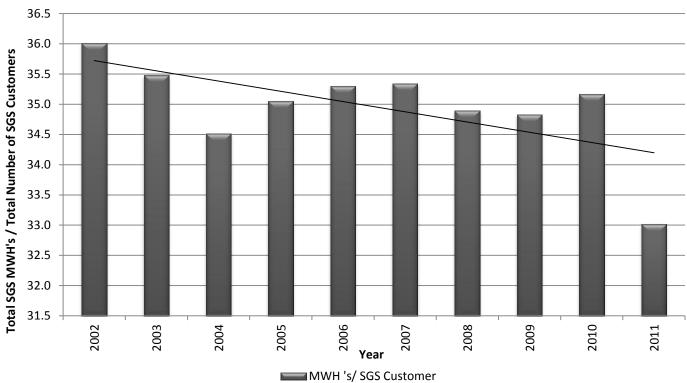

Figure 3

Figure 4

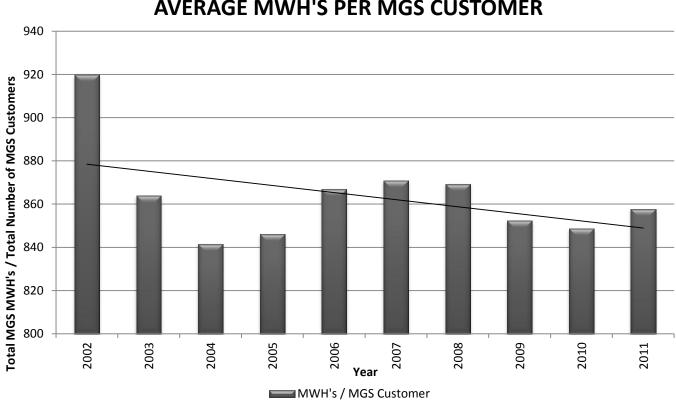
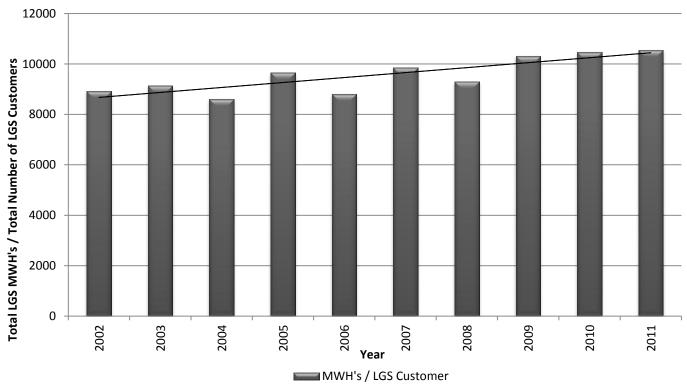

AVERAGE MWH'S PER RESIDENTIAL CUSTOMER

Figure 5

AVERAGE MWH'S PER SGS CUSTOMER


Figure 6

AVERAGE MWH'S PER MGS CUSTOMER

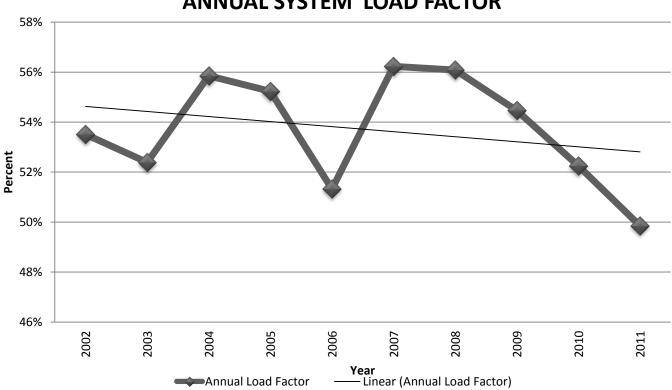
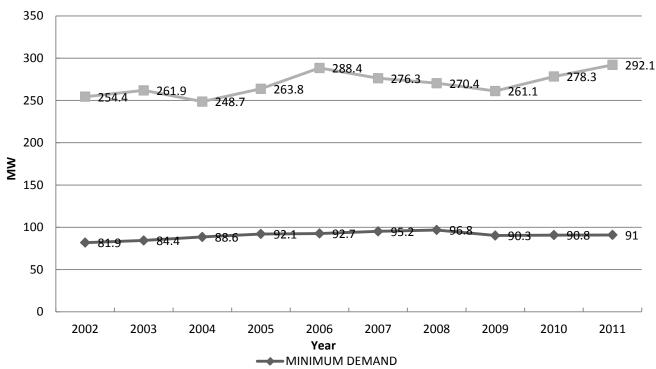

16

Figure 7

AVERAGE MWH'S PER LGS CUSTOMER


Figure 8

ANNUAL SYSTEM LOAD FACTOR

Figure 9, Annual Minimum & Maximum Demands, shows the ten-year trend for annual peak demand. Historically this trend showed a 5 to 6 MW per year increase in system demand. From 2000 through 2006 the increase in peak demand averaged roughly 10 MW per year. 2006 through 2009 showed a decrease in system demand of approximately 9 MW per year due to a number of factors including, energy conservation, limited new construction activity, and cooler than normal summer temperatures. The maximum system demand increased this year from 278.3 MW in 2010 to 292.1 MW in 2011. This increase was a result of normal average summer temperatures, new customers transferred to RPU's system, and some increase in new construction.

Figure 9

Annual Min & Max Demand

Figure 10, RPU System Net Energy Data, shows both the system net energy for load and the energy lost and unaccounted for, or system losses for 1996 through 2011. For the 16 years shown, system net energy for load rises an average of 2.18% while the demand rises an average of 3.39% per year for the 1996 to 2011 period. In 2010 the net energy for load and the system peak were 2.7% and 6.6% respectively. In 2011 net energy for load decreased 1.1% and system peak increased 4.9%

System losses and unaccounted for energy, as a percentage of total energy, has decreased from 2.8% in 2010 to 2.7% in 2011. The amount of system loss and unaccounted for energy is below the historical average of 3.0%

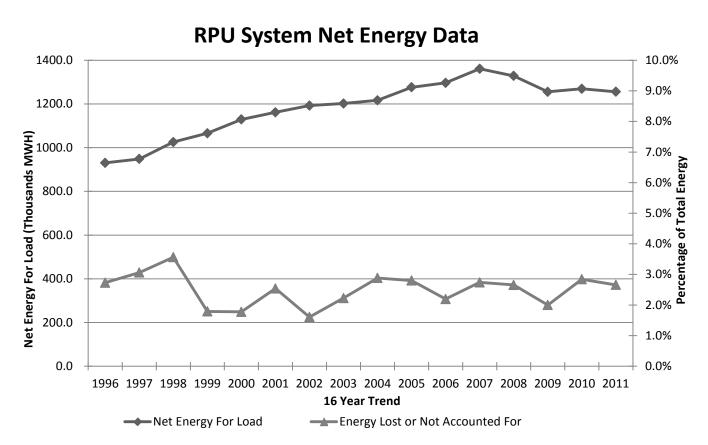


Figure 10

G. System Reliability Statistics

Please refer to Figure 6 and Section G for system reliability statistics and trends.

AVERAGE SERVICE AVAILABILITY INDEX – ASAI

The ASAI index is the ratio of total customer hours that service was available divided by the total customer hours demanded in a time period. The formula to calculate ASAI is:

ASAI = [(customer-hours demanded) – (customer hours off)] x 100 (customer-hours demanded)

customer-hours = (12-month average number of customers) x 8760 hours demanded

The unit of ASAI is percent, and is generally carried out to four decimal places (such as: 99.9986%). A common usage of ASAI is: "the efficiency of the distribution system to deliver electric energy to our customer is _____%"

CUSTOMER AVERAGE INTERRUPTION DURATION INDEX - CAIDI

CAIDI is the weighted average length of an interruption for customers affected during a specified time period. The formula to determine this average is:

CAIDI = <u>sum of customer-minutes off for all sustained interruptions</u> Total # of customers affected by the sustained interruptions

The unit of CAIDI is minutes. A common usage of CAIDI is: "The average customer that experiences an outage on the distribution system is out for ______ minutes."

SYSTEM AVERAGE INTERRUPTION DURATION INDEX – SAIDI

SAIDI is defined as the average duration of interruptions for customers served during a specified time period. Although similar to CAIDI, the average number of customers served is used instead of number of customers affected. The formula used to determine SAIDI is:

SAIDI = <u>sum of customer-minutes off for all interruptions</u> Total # of customers served

The unit of SAIDI is minutes. A common usage of SAIDI is: "If all the customers on the distribution system were without power the same amount of time, they would have been out for ______ minutes".

SYSTEM AVERAGE INTERRUPTION FREQUENCY INDEX – SAIFI

SAIFI described the average number of times that a customer's power is interrupted during a specified time period. "SAIFI-short" is calculated using the number of customers affected by momentary interruptions (such as brief breaker or recloser operations). "SAIFI-long" is calculated using the number of customers affected by sustained interruptions.

SAIFI-long = total # of customers affected by sustained interruptions Average number of customers served

SAIFI-short = <u>total # of customers affected by momentary interruptions</u> Average number of customers served

The units for SAIFI are "interruptions per customer". A common usage of SAIFI is: "On the average, customers on the distribution system experienced ______ interruptions".

System Performance Measures & Reliability Indices

				SA	IFI
		CAIDI	SAIDI	LONG	SHORT
Year	ASAI (%)	(Minutes)	(Minutes)	(Interruption	s/Customer)
1996	99.9960	15.39	20.96	0.37	0.99
1997	99.9957	17.14	22.65	0.44	0.88
1998	99.9205	113.48	417.84	2.30	1.39
1999	99.9815	36.50	97.26	1.25	1.41
2000	99.9962	15.62	20.11	0.64	0.65
2001	99.9937	13.93	33.01	0.89	1.47
2002	99.9916	47.19	44.16	0.94	2.33
2003	99.9943	30.01	30.28	1.01	0.31
2004	99.9936	52.29	33.99	0.65	0.83
2005	99.9934	46.15	34.88	0.76	0.37
2006	99.9862	99.30	72.47	0.73	0.27
2007	99.9899	65.41	53.23	0.81	0.30
2008	99.9936	69.01	33.59	0.49	0.48
2009	99.9892	80.24	56.90	0.71	0.27
2010	99.9788	157.65	111.40	0.71	0.46
2011	99.9906	59.41	49.06	0.83	0.36
Overall					
Averages	99.9870	48.66	67.32	0.92	1.05

Five-Year Moving Averages

CVIEI

				SAIFI		
Year	ASAI (%)	CAIDI (Minutes)	SAIDI (Minutes)	LONG (Interruptior	SHORT s/Customer)	
1999	99.9753	44.87	129.74	1.14	1.09	
2000	99.9780	39.62	115.76	1.00	1.06	
2001	99.9775	39.33	118.17	1.10	1.16	
2002	99.9767	45.34	122.48	1.20	1.45	
2003	99.9915	28.65	44.96	0.95	1.23	
2004	99.9939	31.81	32.31	0.83	1.12	
2005	99.9933	37.91	35.26	0.85	1.06	
2006	99.9918	54.99	43.16	0.82	0.82	
2007	99.9915	58.63	44.97	0.79	0.42	
2008	99.9913	66.43	45.63	0.69	0.45	
2009	99.9905	72.02	50.21	0.70	0.34	
2010	99.9875	94.32	65.52	0.69	0.36	
2011	99.9884	86.34	60.84	0.71	0.37	

NOTES:

- 1. Record-keeping methods for performance statistics were standardized during late 1986.
- 2. All outages of 1 minute or less, even instantaneous recloses of a temporary fault are recorded as 1minute outages.
- 3. In 1998, Rochester experienced a complete blackout due to failure of transmission systems of DPC and NSP during a severe storm.
- 4. In 1999, Rochester experienced a partial blackout due to loss of a mile of 161kV line and relaying problems.
- 5. In 2006 RPU switched from a manual system to an automated process using outage management software to respond to and track outages. The statistics are all inclusive for all types of outages, including TD Major and Planned Outages.
- 6. 2010 indices include the effects of the June tornado.

Figure 11, RPU System Reliability Indices, displays the five year moving average of three important system performance measurements. Trends that show generally high average service availability index (ASAI) and low customer average and system average interruption duration indices (CAIDA and SAIDI) are desirable. In 2011, ASAI increased very slightly (99.9875 to 99.9884%), SAIDI decreased 7.2% (65.52 to 60.84 minutes), and CAIDI decreased 8.5% (94.32 to 86.34 minutes) from 2010 values.

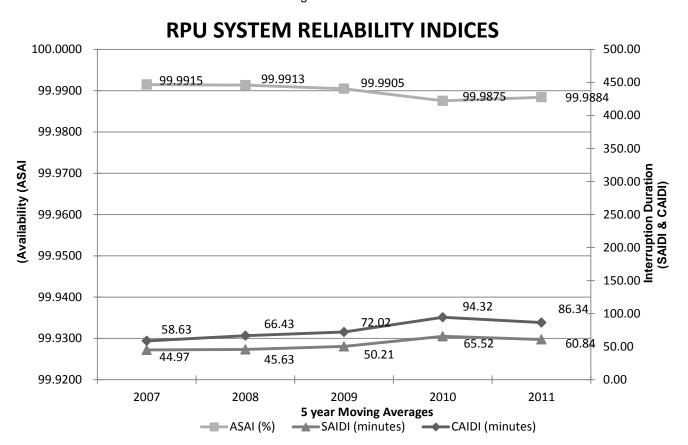
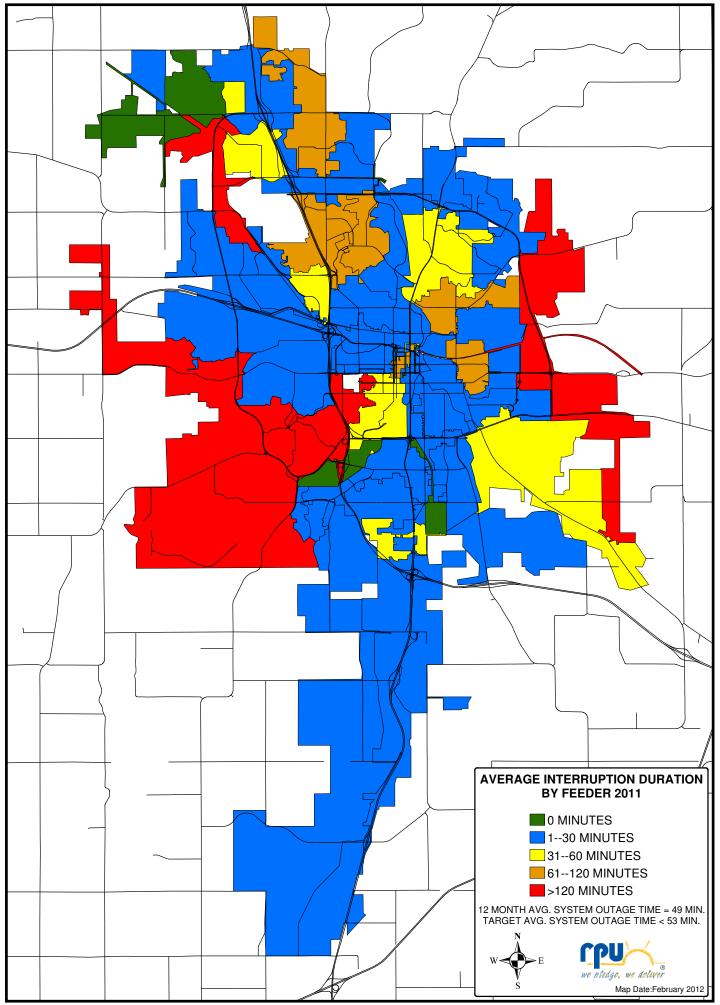



Figure 11

H.	Estima	ted Number of Customers Per Feeder
H. <u>Feeder</u> <u>ID</u> 1301 1302 1303 1304 1311 1312 1313 1401 1402 1404 1411 1412 1413 1414 207 301 302 303 304 305	Estima <u>Customers</u> 1146 736 492 205 972 1206 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ted Number of Customers Per Feeder Feeder Dedicated to
401 402 403 404 405 406 601 602 603 604 605 611 612 613 614 701 702 703 704 705	1197 1960 1619 155 1948 0 272 18 633 644 1573 388 865 838 1672 828 579 2146 961 112	
711 712 713 714 715 801 802 803 804 805 811 812 813 814 815 903 904 905 911 912 Total	755 2068 1244 278 0 2193 0 1684 1163 1208 0 2052 1097 960 180 323 900 1679 1992 1046 49134	

*NOTE: Customers such as Seneca Foods and IBM have many meters, but are considered as one service location.

I. Average Annual Outage by Service Area Map

VIII. POWER PRODUCTION DATA

POWER PLANT PRODUCTION REPORT	2011
	POWER PLANT PRODUCTION REPORT

	SLP UNIT #1	SLP UNIT #2	SLP UNIT #3	SLP UNIT #4	SILVERLAKE PLANT	GAS TURBINE 1		-	HYDRO WHEEL 2
GROSS GENERATION KWH	716,000	502,000	1,344,000	4,388,000	6,950,000	N/A	N/A	N/A	N/A
NET GENERATION KWH (IN SERVICE)	663,804	471,401	1,214,252	3,863,950	6,213,407	441270	4592060	N/A	N/A
NET GENERATION KWH (TOTAL)	-479,477	-725,077	-1,782,000	1,842,100	-1,144,454	441270	4592060	7825600	7972800
Btu/KWH GROSS*	16356	5806	3024	12202	10982	17848	10539	N/A	N/A
Btu/KWH NET (IN SERVICE)*	17642	6182	3347	13857	12283	17848	10539	N/A	N/A
CAPACITY FACTOR	1.02	0.57	0.65	0.8	0.76	0.18	1.05	63.22	64.41
AVAILABILITY FACTOR	96.36	94.24	92.36	92.96	93.98	98.77	97.01	99.17	99.28
FORCED OUTAGE FACTOR	0	2.12	1.99	0.54	1.16	0.02	0.2	0.67	0.63
COAL CONSUMPTION TONSAdjusted	429	10228	14377	1797	26831	N/A	N/A	N/A	N/A
GAS CONSUMPTION MCF	2790	73223	91237	15241	0	7811	47997	N/A	N/A
OIL CONSUMPTION GAL.	N/A	N/A	N/A	N/A	N/A	0	0	N/A	N/A

* actual coal use

25

B. Miscellaneous

1.	Coal Summary – Tons Beginning Inventory January 1		38,659.125
	<u>2011</u> Galatia – Alma, Wisc PRB – Alma, Wisc. Total Shipments	5,712.31 18,758.34	24,470.652
	Available for Burn		63,129.775
	Total Tons of Coal Burned (Adjusted)		26,816.56
	Ending Inventory – December 31		34,375.215
2.	Steam Summary (Silver Lake Plant) Total Steam Generated		63,680 Mlb

IX. ENVIRONMENTAL/REGULATORY ACTIVITIES

Regulatory Compliance /Inspections

RPU facilities were generally operated in compliance with applicable environmental regulations and permit conditions. No NOVs were issued for environmental non-compliance.

Permits

No changes in either the SLP or Cascade Creek air emission permits occurred in 2011. In the fall, the process to compile and complete the SLP Title V air permit renewal application process began. The current permit expires on September 15, 2012 and an application for permit reissuance is due by March 19, 2012.

Continuous Emissions Monitoring Systems (CEMS)

Quality Assurance/Quality Control activities including Linearities, Relative Accuracy Test Audits, Cylinder Gas Audits, and Continuous Opacity Monitor System Audits were all completed and passed on the CEMS at both SLP and Cascade Creek facilities.

Acid Rain Control Regulations

Unit 4 at the Silver Lake Plant and CT2 & CT3 at the Cascade Creek facility is subject to the federal Acid Rain program and must meet sulfur dioxide (SO₂) and emissions requirements. SO₂ mass emissions are limited by the number of SO₂ allowances allocated. The annual SO₂ allocations for SLP Unit 4 are 3,126 tons. In 2011, RPU retained all of its surplus SO₂ allowances and emitted less than 5 tons of SO₂ from SLP Unit 4.

Cross State Air Pollution Rule (CSAPR)

On July 6, 2011, EPA finalized new rulemaking to reduce emissions of SO2 and NOx. This rule, previously referred to as the Regional Transport Rule, replaces the Clean Air Interstate Rule (CAIR) vacated in 2009. CSAPR requires states to significantly improve air quality by reducing power plant emissions that contribute to ozone and/or fine particle pollution in other states. CSAPR requires a total of 33 states to reduce annual Sulfur Dioxide (SO2) emissions, annual Nitrogen Oxides (NOx) emissions and/or ozone season NOx emissions to assist in attaining the 1997 ozone and fine particle and 2006 fine particle National Ambient Air Quality Standards. The rule was to go into effect on January 1, 2012 but on December 30, 2011, the United States Court of Appeals for the D.C. Circuit issued a ruling to stay the CSAPR pending judicial review. Unit 4 at the Silver Lake Plant and all units at Cascade Creek are subject to this rule.

Mercury and Air Toxics Standards (MATS)

On December 21, 2011, EPA finalized the MATS under the Clean Air Act, consistent with the February 2008 D.C. Circuit Court's opinion regarding the vacatur of the Clean Air Mercury Rule (CAMR). This rule addresses hazardous air pollutant emission standards for coal- and oil-fired electric generating units greater than 25MW and creates emission limits for mercury (Hg), particulate matter (PM), Hydrogen Chloride (HCI) and carbon monoxide (CO). In its draft phase, the rule was referred to as the Electric Generating Utility MACT (EGU MACT). MATS becomes effective on April 16, 2012. SLP Unit 4 will need to comply with standards in this rule by April 16, 2015.

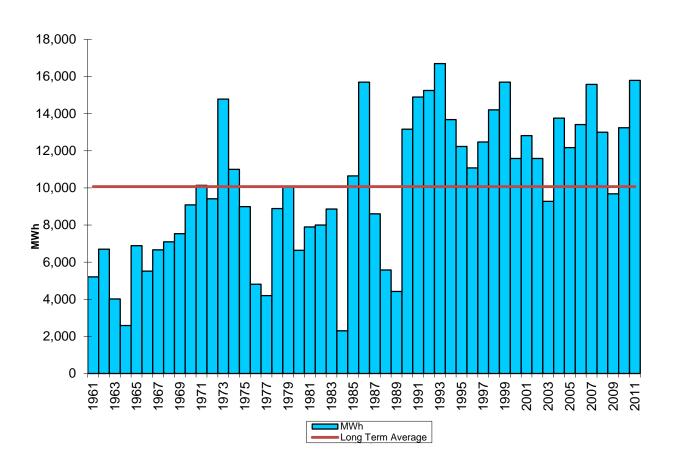
Industrial Boiler MACT (IB MACT)

On March 21, 2011, EPA finalized national emission standards for the control of hazardous air pollutants (HAPs) from new and existing industrial, commercial, and institutional boilers and process heaters with a heat input greater than 10 mmBtu per hour and located at major sources of HAPs. This rule is typically referred to as the Industrial Boiler MACT (IB MACT) rule. The IB MACT rule created emission limits for mercury (Hg), particulate matter (PM), Hydrogen Chloride (HCl) and carbon monoxide (CO). On the same day of finalizing the rule, EPA also issued a notice announcing its intent to reconsider certain provisions of the final rule. The rule would have become effective May 20, 2011 but on May 18, EPA issued a subsequent notice staying the effective dates of the final rule until judicial review had been completed or the agency finalized its reconsideration of the standard. EPA issued the proposed reconsiderations for the rules on December 23, 2011 for public comment with the finalized rules expected in June 2012. On January 9, 2012, the D.C. District Court issued an order vacating EPA's March 21, 2011, stay of the rules. SLP units 1, 2, and 3 will need to comply with standards in this rule by May 20, 2014.

<u>Green House Gas Reporting Rule</u> 2011 was the first year for facilities that emit 25,000 metric tons or more of CO2 equivalent (CO2e) GHG emissions per year from the combustion or use of fossil fuel to report the previous year's emissions. GHG emissions include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and other fluorinated gases. The rule does not require control of GHGs. Both the Silver Lake Plant and the Cascade Creek facilities are subject to this rule. SLP emitted 98,715 tons of CO2e GHG emissions while the Cascade Creek facility emitted 3,389 tons of CO2e GHG emissions.

Hydro Operations

The Zumbro Hydro Plant produced 15,798 MWh of energy during 2011. This is significantly above the long-term average for the Hydro facility.


YEAR	MWh	YEAR	MWh	YEAR	MWh	YEAR	MWh
1961	5,208	1974	10,998	1987	8,600	2000	11,586
1962	6,697	1975	8,990	1988	5,576	2001	12,824
1963	4,020	1976	4,809	1989	4,419	2002	11,586
1964	2,590	1977	4,198	1990	13,169	2003	9,280
1965	6,887	1978	8,886	1991	14,896	2004	13,763
1966	5,517	1979	10,041	1992	15,252	2005	12,177
1967	6,666	1980	6,639	1993	16,702	2006	13,412
1968	7,095	1981	7,901	1994	13,683	2007	15,582
1969	7,539	1982	8,002	1995	12,232	2008	13,002
1970	9,084	1983	8,860	1996	11,075	2009	9,679
1971	10,139	1984	2,297	1997	12,478	2010	13,241
1972	9,417	1985	10,649	1998	14,206	2011	15,798
1973	14,784	1986	15,698	1999	15,696		

ANNUAL HYDROELECTRIC GENERATION

AVERAGE 10,

10,069

Figure 12

2011 Silver Lake Plant Air Emissions Report

Hours of Operation	Unit 1	Unit 2	Unit 3	Unit 4	Total
Total Hours	164	3,966	5,199	201	9,530
Fuel Use					
Tons of Coal Burned	407	10,078	16,312	1,771	28,567
MMCF of natural Gas Burned	2.82	73.59	106.46	15.24	198.11
leat Input					
MMBtu's of Coal Burned	8,755	219,545	352,780	37,942	619,022
MMBtu's of Gas Burned	2,859	74,201	107,542	15,421	200,022
Total Heat Input	11,614	293,746	460,322	53,363	819,044
Fuel Characteristics					
MMBtu per MCF of Natural Gas	1,015	1,008	1,010	1,012	1,011
Average Percent Ash - Coal	8.66	8.94	8.88	9.40	8.97
Average MBtu/Lb - Coal	10,757	10,893	10,814	10,713	10,834
Average Percent Sulfur - Coal	0.85	0.83	0.92	0.81	0.85
Average Moisture - Coal	15.98	14.85	15.14	15.19	15.29
Emissions					
SO2 Emission Rate Ib/mmbtu	1.15	1.01	1.13	0.04	0.83
Tons of SO2 Emissions (CEMS)	6.63	148.71	259.67	1.18	416.19
Tons of SO2 Emissions (Test Dat	6.55	158.37	284.86	27.26	477.03
Tons of SO2 Emissions (Pt75)				5	
Tons of CO2 Emissions (Pt75)				4,666	
Tons of NOx Emissions (Pt75)				9	
Tons of NOx Emissions	4.87	121.16	194.33	21.61	341.98
Tons of CO Emissions	0.22	5.61	8.55	1.08	15.46
Tons of VOC Emissions	0.02	0.50	0.78	0.10	1.40
Tons of TSP Emissions	0.91	23.36	37.50	4.32	66.10
Tons of PM-10 Emissions	0.40	10.14	18.15	1.01	29.70
Tons of Lead Emissions	0.00	0.07	0.11	0.01	0.19

2011 Silver Lake Plant Air Emissions Compliance Summary

		Stack 1/2	Unit 1	Uni	it 2 Unit 3:	Unit 4
Hour	s On line	3996	164	39	66 5199	201
SO2 LbPerMbtu 1 Hour Exce	edances	7			0	0
Hours of CEMS [Downtime	0			1	137
Opacity 6 Minute Exce	eedances	127			44	0
Hours with Opacity 6M Excee	dances	84			26	0
Number of Opacity 6M	violations	43			18	0
COMS Downtime 6M	I Periods	61			75	0
				ι	Jnit 4 NOx lb/mmbtu:	
Calibration	n Failures	2			6	629
Calibration	Warnings	3			22	39
U4 SO2 Allowances	Allotted:	28,970	Used:	14,467	Available:	14,503
For the year 2011 (100%)	Allotted:	3,138	Used:	5	0% Available:	3,133

2011 Silver Lake Plant Air Emissions	Compliance Summary
--------------------------------------	--------------------

		Stack 1/2	Unit 1	Uni	t 2 Unit 3:	Unit 4
Но	urs On line	3996	164	39	66 5199	201
SO2 LbPerMbtu 1 Hour Exc	eedances	7			0	0
Hours of CEMS	Downtime	0			1	137
Opacity 6 Minute Ex	ceedances	127			44	0
Hours with Opacity 6M Exce	edances	84			26	0
Number of Opacity 6M	Violations	43			18	0
COMS Downtime	6M Periods	61			75	0
				U	Init 4 NOx Ib/mmbtu:	
Calibrati	on Failures	2			6	629
Calibration	n Warnings	3			22	39
U4 SO2 Allowances	Allotted:	28,970	Used:	14,467	Available:	14,503
For the year 2011 (100%)	Allotted:	3,138	Used:	5	0% Available:	3,133

	ELECTRIC OPERATING PERMIT FEES																			
										Α	nnual Fe	e /	Amount							
Agency	Permit or Fee		2002		2003		2004		2005		2006		2007		2008	2009		<u>2010</u>		<u>2011</u>
MPCA	SLP - Air Emission	\$	96,954	\$	107,248		-				138,231				-	-				58,059
	SLP – NPDES	\$	13,000	-			1,230						1,230		1,230			1,230		1,230
	SLP – Haz. Waste Generator	\$		\$			235				411		413		425	453	-	477		485
	CCGT – Air Emission	\$	2,782			-	658						403		827			772		899
	SC – Haz. Waste Generator	\$	198			-	1,421				-	\$	683		425			425		425
	Storm Water (SLP, CCCT & SC)	\$	630				840						800		800			800		400
	RPU/IBM GenSet Air Emissions Fee	\$	-	\$		\$	1,626			\$		\$	25		61			25		25
	Toxic Pollution Prevention Fee (TRI)	\$	9,001	\$	7,963	\$	3,128	\$	9,363	\$	9,509	\$	8,228	\$	7,454	\$ 8,408	\$	5,647	\$	2,762
MDNR	SLP – Water Appropriation (Surface Water)	\$	41,436	\$	24,873		77,879				-		-		71,716	-		30,786		2,431
	SLP – Water Appropriation (Groundwater)					\$	643					\$	509			\$	\$	140		140
	Power Line License Fees	\$	285	\$	1,976	\$	2,585	\$	7,612	\$	-	\$	1,507	\$	-	\$ -	\$	3,238	\$	-
MN DOC/PUC	Assessment-PPSP/ADCP/EFA	\$	6,998	\$	14,892	\$	6,436	\$	6,934	\$	8,799	\$	14,808	\$	14,474	\$ 18,543	\$	9,944	\$	11,269
DPS/ERC	Haz. Material Incident Response Act	\$	800	\$	800	\$	800	\$	800	\$	800	\$	800	\$	800	\$ 800	\$	800	\$	800
	SARA (SLP, CCCT & SC)	\$	225	\$	225	\$	225	\$	225	\$	225	\$	225	\$	225	\$ 225	\$	225	\$	225
ANNUAL TOTA	L	\$	172,508	\$	177,061	\$	144,899	\$	240,535	\$	239,224	\$	222,223	\$	226,287	\$ 263,772	\$	182,160	\$	79,151
Percent Change	from Previous Year		21%		3%		-18%		66%		-1%		-7%		2%	17%		-31%		-57%
Cost of Permit F	ees / Capacity KW		\$0.92		\$0.93		\$0.76		\$1.27		\$1.26		\$1.17		\$1.19	\$1.39		\$0.96		\$0.42
**Beginning in 200 volume of water exceeded volum	were included prior to 2004)5, a \$20/Mgal surcharge was applied to the r discharged in months of June, July & August that ne used in Jan. acity standardized at 190,000 kW.																			
		\$ \$ \$	31,335	\$		\$	16,900	\$	28,204	\$	138,387 22,523 78,313	\$	28,695	\$	25,833	\$ 30,884	\$	128,448 22,786 30,926	\$	17,596

ROCHESTER PUBLIC UTILITIES

X. RPU Organizational Chart

	5					GENERA	L MANAGEMENT (134	0					
						CENER	Koshire, Larry Wilson, Kathy	.,					
							Cooke, Bob						
	PC	WER RESOURCES Schlink, Wally	(133)		CUS	STOMER RELATIONS (Schlink, Wally Open	132)		RVICES (151) nsel, Joe				
	POWER	PRODUCTION		PORTFOLIO OPTIMIZATION (171)	CUSTOMER CONTACT (150)	MARKETING (137)	COMMUNICATIONS (118)	INVENTORY MANAGEMENT (141)		WORK MA	NAGEMENT & INTEGRAT	ED SERVICES	
	<u>Power Productio</u> Dzub	<u>n Management (108)</u> ay, Tony		Sutton, Jeremy	Tompkins, Mary	Hanson, Patty		Ledebuhr, Bob (139)	3	Work Manageme	e <u>nt & Integrated Services</u> Cook, William	<u>Management <mark>(166)</mark></u>	
Power Resource Services (108) Wueller, Matthew Williamson, Tom Open <u>Work Planning</u> (108) Mueller, Tony 00-Cascade Creek (Coal Crew (109) Davis, Nick (11) Baier, Bob Greenwaldt, Terry Pyfferoen, Todd Quandt, Steve Reiser, Wade L Seim, Wayne <u>Measures &</u> Controls, (120) "Button, Jay Erickson, Brad Lafflam, James Olson, Jeff Schriever, Larry	Power Resources Operations (110) "Haase, Mithon Armos, Brad Berg, Scott Cobb, Ron Diep, Alan Fleischaker, Sven Folkert, Gregg Grant, Keith Holloway, Larry Holtorf, David Keller, Tom Kelly, Shawn Kruger, Dan Lacey, James Quandt, Chad Soto, Jesus Stamp, Steve Valli, Chris	Power Resources. <u>Maintenance</u> (111) 'Davis, Nick Ellingson, Tom Elpert, Monte Heppner, Greg Hill, Mark Morrow, Randy Nienow, Steve Nord, Richard Pettis, Jim Putzier, Kristopher Sanders, Greg Schaudenecker, Rober Shones, Jacob Wegman, Dick Open	t	Crom, Cindy Drugg, Jessica Kruger, Nancy Radermacher, Jolene Ward, Jamie Miller, Denise Open	Bierbaum, Dirk Humphrey, Stephanie Open I <u>McRoberts, Doug (114</u>)	Benson, Anthony	Sommer, Mike McHugh, Jessica Nelson, Todd Quimby, Dan Trom, Keith	Encilities Management (147) *Steve Monson (147) Ollendieck, Phil Tauzell, John	Fleet (146) *Steve Monson (14: Book, Jim Little, Dave Steffi, Tim	Drafting, Mapping & Property. Management (112) 7) Andrist, Heidi Moore, Ryan Open	Environment & Regulatory (152) Diekvoss, Craig Osweiler, Todd	Work. <u>Management.</u> (156) *Open
01-SLP Unit #1 02-SLP Unit #2 03-SLP Unit #3 04-SLP Unit #4 06-Hydro 06-Power Acquisitio 57-SLP Common Cr 62-Generation Fuel 63-Cascade Creek (64-Cascade Creek (65-SLP Steam	osts GT #2 GT Common	Wildeman, Roger Open Open Open							CORE SERVICE	S (135)			
		Parker							Mark Kotsche				
FINANCE & ACCOUNTING (138)	INFORMATION SERVICES (144)	BUSINESS SERVICES (145)	PROCUREMENT			INFRASTRUCTURE PLANNING & DESIGN		CONSTRUCTION, MA	INTENANCE, & FIELD OPE	RATIONS		SYSTEM OPERATIONS & TRANSMISSION MANAGEMENT (107)	SAFETY (167)
Blom, Bryan	Teng, Phil	Donahue, Deb	Procurement Management (139) Ledebuhr, Bob			<u>Infrastructure</u> <u>Planning & Design</u> <u>Management. (115)</u> Anderton, Randy	Construction, M	Maintenance & Field Opera	ttions Management - T&D	_(<u>112)</u>	<u>Construction,</u> <u>Maintenance & Field</u> <u>Operations</u> <u>Management - Water</u> <u>(127)</u> Johnson, Cary	Nickels, Scott	Cooke, Bob
Anderson, Judith 3orgschatz, Mary 8utton, Barb Cook, Roxanne Engle, Terri Heppelmann, Mik Highum, Jody Kronebusch, Jess Livingston, Tina	 Bly, Linda Folkert, John Gartner, Lori Olufson, Charles Peterson, Frank Preston, Jim 	Anderson, Lana Boldt, Jili Kanz, Elizabeth Zamzow, Melissa	<u>Procurement (140)</u> Shelstad, Sylvia Open			Engineering (Electric 116., Water 128) Cook, Steve Pentek, Charles Rovang, Doug Stiller, Neil *Engle, Mike Klug, Jerrod Richardson, Donn Riess, Chad	Transmission & Diss *Fiek, Steve Gardner, Sam Himango, Jim Nash, Brian Olson, Bjorn Behrens, Castilo, Clark, C Evenson, Floeter, C Hall, N Helmbred Johnson	"Bennett, Pete Gunderson, Brad St. Marie, Tom Sturgis, John Wilde, Mike Matt Rob Chad , Rich charles lick ht, Dan	Technical Services (11) *Sturm, Dan Kranz, Jeff Majerus, Bill Mason, Ted Minogue, Peter Schmitz, William Work Planning (114) Toft, Daniel	<u>Work Planning</u> (113) See, Sang	Water Distribution & Operations. (122) Bjelland, Duane Brekke, Matthew Demarino. Chris Heimer, Mike Horsman, Roger Jestus, Timothy Johnson. Steve Kruger, Ron Langbehn, Craig Langbton, Craig Langbton, Craig Langhton, Craig Meyers, Kevin Mullen, Jay	*Luckadoo, Ricky Blackburn, Sam Cocker, Jane Frantz, Bob Gossman, Joe Heimer, William Kinzer, Dan Open	

* = Dual Reporting * = Supervisor Revised as of: 2/23/12